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Abstract statistical diagnostics have led to a common perception that only few global models can
reproduce the Madden-Julian Oscillation (MJO). Here we demonstrate, using a method of tracking
individual MJO events, that this perception is incorrect. Of 27 global model simulations diagnosed, all
produced large-scale slowly eastward propagating signals in precipitation, which are taken as manifestations
of the MJO. The difference is some model produced them frequently, others infrequently. There is no
statistically significant distinction between the strength and propagation speeds of MJO events produced by
most of these models. A hypothesis is proposed to interpret our results: A model can produce the MJO only in
a particular background state. If the background state of a model can be constantly in a condition that is
conducive to its production of the MJO, this model simulates the MJO frequently. If not, this model can still
produce the MJO but only infrequently when its seasonal background state occasionally migrates into a
condition that is conducive to its production of the MJO. Preliminary results from testing this hypothesis
are presented.

1. Introduction

Since the Madden-Julian Oscillation (MJO) was first documented [Madden and Julian, 1971, 1972], its simula-
tion by global models has always been a daunting challenge [Hayashi and Golder, 1986; Lau and Lau, 1986;
Slingo et al., 1996; Sperber et al., 1997; Waliser et al., 2003; Lin, et al., 2006; Zhang et al., 2006; Kim et al., 2009;
Hung et al., 2013; Jiang et al., 2015]. While progress has been slowly made in this regard [Lau and Waliser,
2011; Zhang, 2013; Ling et al., 2017], it is widely perceived that most current global models still cannot produce
the MJO. This perception is based on model diagnostics using methods of extracting statistical signals of the
MJO. These methods include time-space spectrum analysis and time-lag correlation of precipitation or other
variables immanent to the MJO [Lin, et al., 2006; Kim et al., 2009; Waliser et al., 2009; Hung et al., 2013, Jiang
etal., 2015]. In most model simulations, there is no dominant statistical eastward propagating signal: The ratio
of MJO power to its westward propagating counterpart of the same frequencies and zonal wave numbers is
equal or less than one [e.g., Lin, et al., 2006, Figure 10; Hung et al., 2013, Figure 8], and time-lag regression
shows stationary or even westward propagating patterns [e.g., Jiang et al., 2015, Figures 3 and 4].

These results have prompted many to wonder why so few global models can produce the MJO. A common
belief is that a model’s ability of simulating the MJO depends on specific features of its cumulus parameteriza-
tion scheme, such as its entrainment/detrainment rate [Bechtold et al., 2008; Fu and Wang, 2009; Hannah and
Maloney, 2014], closure assumption [Zhang and Mu, 2005; Mu and Zhang, 2008; Benedict et al., 2013, Peters et al.,
20171, or convective momentum transport [Wu et al., 2007; Ling et al., 2009; Miyakawa et al., 2012]. Efforts have
been made to design process-oriented diagnostic metrics that may help identify properties in parameteriza-
tion schemes, especially cumulus schemes, which may be essential to MJO simulations [Hannah and
Maloney, 2011; Hirons et al., 2013; Zhou et al., 2012; Kim et al., 2014, Ahn et al., 2017; Peters et al., 2017].

Studies on MJO simulations to date mostly emphasize on statistical signals (e.g., spectral power and regres-
sion patterns) of the MJO in multiyear simulations. Lost in such emphases are characteristics of individual
MJO events in model simulations. Such characteristics include starting and ending longitudes, strength,
propagation speeds, longitudinal ranges, life spans, and intervals between adjacent MJO events.
Information of these characteristics of individual MJO events may provide new insights to the issues of
MJO simulations.

LING ET AL.

NEW INTERPRETATION OF MJO SIMULATION 5798


http://orcid.org/0000-0001-7085-0711
http://orcid.org/0000-0001-9708-1561
http://orcid.org/0000-0003-1861-9285
http://orcid.org/0000-0002-1395-1302
http://publications.agu.org/journals/
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1944-8007
http://dx.doi.org/10.1002/2017GL073891
http://dx.doi.org/10.1002/2017GL073891
mailto:lingjian@lasg.iap.ac.cn

@AG U Geophysical Research Letters 10.1002/2017GL073891

Motivated by this, we in this study reevaluated MJO signals in 27 simulations by global models that were
diagnosed by Jiang et al. [2015]. Instead of only examining statistical signals of the MJO in these simulations,
we applied an MJO tracking method [Ling et al., 2014; Zhang and Ling, 2017] to identify individual MJO events
in the simulations as well as observations. We introduce the data and method in section 2, present the results
in section 3, and discuss their implications in section 4.

2. Data and Method
2.1. Data

Daily precipitation (0.25° x 0.25°, 1998-2015) from Tropical Rainfall Measuring Mission (TRMM) 3B42v7
Multisatellite Precipitation Analysis [Huffman et al., 2007] was used to identify individual MJO events and
mean precipitation pattern in observations. Zonal wind and specific humidity (0.75° x 0.75°,1998-2015) from
the European Centre for Medium-Range Weather Forecasts Interim Reanalysis (ERA-I) [Dee et al., 2011] were
used as surrogates of observations in calculating background states of the atmosphere to compare with
those in model simulations.

Twenty-year global model simulations from the Global Multi-Model Evaluation Project on Vertical Structure
and Diabatic Processes of the MJO (GASS-YoTC-MJO) [Petch et al., 2011] were assessed for their ability of
producing the MJO. The project includes 27 simulations by 20 atmospheric-only global models, six fully
atmosphere-ocean coupled models, and one partially coupled model. Their full descriptions are available
in Jiang et al. [2015].

2.2. MJO Tracking Method

The MJO tracking method used in this study was first introduced by Ling et al. [2014] and recently updated by
Zhang and Ling [2017]. The basic idea is to track the eastward propagation of positive precipitation anomalies
along the equator and identify MJO events based on known observed characteristics of the MJO, such as its
propagation speed and intraseasonal timescales. Applying this tracking method requires several parameters
(e.g., reference longitude, tracking domain, range of propagation speed, minimum interval, and propagation
distance of the MJO) to be initially selected based on one’s perception of the MJO. Once these parameters are
selected, MJO events are identified without further human intervention, hence objectively and reproducibly.
The tracking method provides other properties of the selected MJO events (e.g., starting and ending longi-
tudes, propagation ranges in longitude, strength in terms of precipitation, and life spans). All these character-
istics are not available from MJO indices based on empirical orthogonal functions [Wheeler and Hendon, 2004;
Kiladis et al., 2014; Lafleur et al., 2015; Liu et al., 2016]. These tracked characteristics are not sensitive to slight
changes in the selected parameters. A full description of this method can be found in Zhang and Ling [2017].

This MJO tracking method was applied to intraseasonally filtered daily precipitation anomalies in the equa-
torial region from both observations and model simulations using the same parameters as in Zhang and
Ling [2017]. Daily anomalies in precipitation were generated by removing the daily climatology (omitting
29 February in leap years). They were then averaged over a latitudinal belt of 15°5-15°N. A time-space fast
Fourier transform was used to obtain the large-scale (zonal wave numbers 1-10) and intraseasonal
(20-100 days) signals. The filtering retains both eastward and westward propagating signals in this study.
The common practice of retaining only eastward propagating signals is appropriate for observations
[Gottschalck et al., 2013; Zhang and Ling, 2017] in which eastward signals clearly dominate the intraseasonal
band [Zhang and Hendon, 1997], but it is inappropriate for model simulations where westward propagating
signals can be as strong as or even stronger than eastward signals in the intraseasonal band [Zhang et al.,
2006; Jiang et al., 2015]. For consistency, daily precipitation from TRMM (0.25° x 0.25°) was interpolated to
the same spatial grids (2.5° x 2.5°) of the model simulations prior to the filtering.

2.3. Pattern Correlation

Pattern correlation between time-lag regression for precipitation anomalies from model simulations and
observations was used by Jiang et al. [2015] to objectively and quantitatively measure model capability of
simulating the MJO. This method was adapted in this present study with a modification. In Jiang et al.
[2015], two pattern correlation coefficients, each with a reference point over the Indian Ocean and Pacific
Oceans, respectively, were averaged. In this present study, only the pattern correlation with a reference point
at 90°E was used to emphasize MJO signals over the Indian Ocean. The reason for this is that in observations
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most MJO events form over the Indian Ocean, and only ~50% of them propagate through the Indo-Pacific
Maritime Continent and reach the western Pacific [Zhang and Ling, 2017]. Our modification yields almost
consistent ranking of model capability of producing the MJO as in Jiang et al. [2015]. It should be pointed
out that including the reference point(s) in the pattern correlation calculation inflates the correlation coeffi-
cient. For example, when a model does not show clear eastward propagation in its time-lag regression map,
its pattern correlation with observations can still be greater than 0.5 and significant at the 95% confidence
level [Jiang et al., 2015]. This inflation in the pattern correlation coefficient, however, affects negligibly the
ranking of the model capability of simulating the MJO.

3. Results

The capability of simulating the MJO by the 27 models was ranked using the measure of pattern correlation
briefly described in section 2.3. Based on this ranking, they were grouped into three tiers of nine simulations
in each, as illustrated in Figure 1a: the top (blue), middle (green), and bottom (orange) tiers, with their scores
above, near, and below the total average, respectively. Models in the top tier produced evident eastward
propagating signals in their time-lag regression map (contours in Figure 2b) similar to the TRMM observations
(contours in Figure 2a). In contrast, models in the bottom tier do not show obvious eastward propagating
signal in their time-lag regression map (contours in Figure 2c). They are models incapable of producing
the MJO in a statistical sense.

When the MJO tracking method was applied to these model simulations, we found that all models, including
those in the bottom tier, produced MJO events. As an example, a model (CFS2) from the bottom tier that
shows only westward propagation signals in its time-lag correlation map [iang et al., 2015, Figure 3]
produced an MJO event (Figure 2e) that has a comparable amplitude to an MJO event produced by a model
(PNU_CFS) from the top tier (Figure 2d). The composite of all tracked MJO events from models in the bottom
tier shows systematic eastward propagation in precipitation anomalies (colors in Figure 2c). This is expected
but in a sharp contrast to their averaged lag-regression (contours), which gives an impression that these
models cannot produce the MJO at all. In these models, the MJO signals are, however, much weaker over
the Pacific than Indian Ocean compared to the observations (Figure 2a) and models in the top tier
(Figure 2b). This is perhaps an illustration of the exaggerated barrier effect of the Maritime Continent in
models [Inness and Slingo, 2006; Kim et al., 2009; Seo et al., 2009].

Based on our diagnostics using the MJO tracking method, the difference between the models is not whether
they can produce the MJO; it is how often they do. This difference is illustrated in Figure 1b, where longitu-
dinal distributions in occurrence frequencies of MJO initiation derived from the tracking method are plotted
for the observations and model simulations. All models suffer from a major bias in their MJO simulations: In
the observation, most MJO events form over the Indian Ocean, whereas simulated MJO initiation is more
evenly distributed in longitude over the Indo-Pacific region. Compared to the observations, almost all models
underestimate the MJO occurrence frequency, particularly during boreal summer. Results presented in the
rest of this study are for the extended boreal winter (October-March) and for only the tracked MJO events
that form over the Indian Ocean or to its west (their tracks passing through 90°E) in both observations
and simulations.

Most of the models severely underestimate the occurrence frequency of MJO events formed west of 90°E,
with their averaged occurrence frequency only less than a half of the observed (Figure 3a). The major differ-
ence between models in the top and bottom tiers ranked by the pattern correlation is their occurrence
frequencies of the simulated MJO. MJO simulation scores based on the pattern correlation are significantly
(at the 95% confidence level) correlated to the occurrence frequency of MJO events. This is easy to under-
stand: No matter how well a model may produce the MJO, its pattern correlation based on the time-lag
regression must be relatively low if it produces only a few MJO events in its 20 year simulations.

Models in the bottom tier, which cannot produce statistics of the MJO (Figure 2c), can produce MJO events of
many similar qualities as models in the top tier. Based on Kolmogorov-Smirnov (KS) tests, propagation ranges
of simulated MJO events by the top-tier models are significantly (at 95% confidence level) longer than those
simulated by the bottom-tier models (Figure 3b), but their strength (Figure 3c) and speeds (Figure 3d) are not
distinguishable between the top and bottom tiers. The more commonly used MJO scores based on the
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pattern correlation measure occur-
rence frequencies and the propaga-
tion ranges, but not other properties
of the simulated MJO, and certainly
not whether a model can produce
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below (orange) the average, respectively. (b) Longitudinal distributions of viewed as individual pulses [Salby
MJO initiation frequencies (yr ') in the TRMM observations (black solid line), ~ and Hendon, 1994; Yano et al., 2004]
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marks the one standard deviation for all models. The longitudinal bin width
is 20°. The pattern correlations between the models and observations were
calculated over 60°E-180° and day —20 to day 20 (see Figure 2).

event. The MJO can therefore be

2008] and may not. It is based on this
pulse viewpoint of the MJO that we
suggest occurrence frequency of
eastward propagating large-scale anomalies in precipitation is not a necessary feature for judging whether
a model can simulate individual MJO events.

Based on these results, we suggest that in addition to statistical signals, we need to evaluate MJO simulations
in terms of the characteristics of individual MJO events. We also argue that the right question to ask regarding
model capability of simulating the MJO is not why some models can produce the MJO and others cannot.
They all produce individual MJO events to a certain degree. The right question should be why some models
produce MJO events more frequently than others.

We propose a hypothesis to address the latter question: A model can produce the MJO but only in a certain
background state, regardless whether it is similar to the observed. In this hypothesis, the background state of
a model can be constantly in a condition that is conducive to its production of the MJO. This model simulates
the MJO frequently. In another model, its background state can be constantly in a condition unfavorable to its
production of the MJO. Its background state, however, may change slowly and occasionally migrate into a
condition that is conducive to its MJO production. This model produces the MJO infrequently. Based on this
hypothesis, it is possible that a model produces the MJO even if its background state that is conducive to its
MJO production is very different from the observed.

According to this hypothesis, the background state in which a model produces the MJO should be different
from that in which the same model does not produces the MJO. One way to evaluate this hypothesis is to
examine whether the difference in these two background states is statistically significant. There is, however,
no consensus as what fields constitute the background state particularly for the MJO. Variables commonly
used to construct background states in MJO studies include precipitation, low-level zonal wind, and low-level
humidity [Slingo et al., 1996; Hendon et al., 2000; Kemball-Cook et al., 2002; Inness et al., 2003; Zhang
et al., 2006].
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Figure 2. Time-longitude (15°S-15°N) diagrams of regressions (contours, interval 0.25) and composites (colors) of tracked MJO precipitation (mm d71) during
October-March for (a) TRMM, (b) simulations in the top tier, and (c) simulations in the bottom tier. Time-longitude (15°S-15°N) diagrams of precipitation anoma-

lies (colors, mm d71) and their 5 day running mean (contours, interval 1) from (d) the PNU_CFS simulation (time 0 on 29 September 1998) and (e) the CFS2 simulation
(time 0 on 15 October 1998). Time 0 is when an MJO track crosses 90°E. The dashed contours are for negative values, and the zero contours omitted. The dashed
straight lines mark the 5 m s~ " eastward propagation speed. Regressions in Figures 2b and 2c were calculated for each individual simulation and then averaged over

the top and bottom tiers, respectively.

We used seasonal means of precipitation, zonal wind at the 850 hPa level, and weighted average of
specific humidity between 925 and 700 hPa to define background states. Here a season is an extended
boreal winter (October-March). For a given model simulation, a season was treated as one with the MJO if dur-
ing which any MJO event was detected by the tracking method; otherwise, it was taken as a season without the
MJO. The background states are measured by pattern correlation, root-mean-square error (RMSE), and mean
bias (difference in domain-averaged seasonal means) calculated against long-term seasonal mean of TRMM
precipitation and ERA-I wind and humidity over a domain of 60°E-180° and 15°S-15°N where the observed
MJO prevails. Differences between the background states for seasons with and without the MJO are evaluated
by comparing the probability density distributions of the three measures. A KS test was used to assess whether
their differences are significant at the confidence level of 95% (p < 0.05).

Ideally, the two background states should be compared for each individual model. But with the 20 year simu-
lations we have, this would suffer from insufficient sampling for robust statistics. We decided to compare
seasons with and without the MJO for all simulations combined. This faces a problem: Even if our hypothesis
is correct, the background states for all-model seasons with and without the MJO may not be significantly
different if there is no systematic relationship between background states in the simulations and observa-
tions. The results turn out not to be the case.
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Figure 3. Scatter diagrams of MJO simulation skill scores in terms of pattern correlation versus averaged (a) occurrence fre-
quencies (yrq), (b) propagation ranges (longitude), (c) strength (averaged rain rate in mm d71), and (d) speeds (m 571) of
tracked MJO events in the model simulations. Their correlation coefficients are given on the top right corners. The blue,
green, and orange dots represent models of the top, middle, and bottom tiers, respectively, as defined in Figure 1a, and the
corresponding stars represent their means. The vertical whiskers mark one standard deviations. The black dotted lines
denote linear fit by least squares means. The large and small octagonal stars on the right ordinates mark observed means
and one standard deviations. The pattern correlation between the models and TRMM was calculated for 60°E-180° and
—20-20 days (see Figure 2).

Model background states defined by the three variables are all significantly different between seasons with
and without the MJO in the simulations in terms of their pattern correlation with the observations
(Figures 4a-4c). Pattern correlation is in general higher for seasons with the MJO than those without. It
suggests that overall, a background state with its spatial pattern closer to the observed is more likely to be
conducive to MJO production. But it should be noticed that such a background state does not guarantee a
production of the MJO and the MJO can be produced in a background state with its spatial pattern very
different from the observed (low pattern correlation). Among the three variables used to define the back-
ground state, zonal wind at 850 hPa appears to be the most influential to MJO simulations. It is signifi-
cantly different between seasons with and without the MJO in the simulations in terms of all three
measures (Figures 4b, 4e, and 4h). RMSE of the low-level zonal wind is in general smaller for seasons with
the MJO than those without. Its mean bias is, however, slightly higher for seasons with the MJO than those
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Figure 4. Probability density distributions of background states with the MJO (orange bars and dashed curves) and without (blue bars and solid curves) for the model
simulations. Background states are defined using October-March means of (a, d, and g) precipitation, (b, e, and h) zonal wind at 850 hPa, and (c, f, and i)
weighted-average specific humidity between 925 and 700 hPa and are measured by their (a-c) pattern correlation, (d-f) root-mean-square error (RMSE), and

(g-i) mean bias with respective to observed climatology in a domain of 60°E-180° and 15°S-15°N. Total MJO and non-MJO seasons used and p values of KS tests are
given in each panel. Specific humidity is not available from two simulations, hence different total seasons.

without. This implies that a westerly bias may compensate other biases and errors in models to give a
more favorite condition for MJO production than an easterly bias [Inness et al, 2003]. Nevertheless, as
seen in pattern correlation, small RMSE and mean bias in the low-level zonal wind do not guarantee an
MJO production.

4, Discussion

The results from this study indicate that the enigma of global model simulations of the MJO is not why
some models can and others cannot produce the MJO. It is not even why some models produce strong
and others weak MJO events. It is why some models produce the MJO frequently and other infrequently.
We hypothesized that the central piece of this puzzle is the background state. The importance of the back-
ground state has been proposed by many to explain differences in MJO statistics simulated by different
models [Slingo et al., 1996; Hendon et al., 2000; Kemball-Cook et al., 2002; Inness et al., 2003; Zhang et al.,
2006]. Here we extend it to explain how occurrence frequency of simulated MJO, which is the main reason
for simulated MJO statistics, depends on seasonal background states that may vary from year to year
within a given model.

Our results may also explain the conundrum wherein a model may produce statistical signals of the MJO in its
climate simulation but its MJO prediction skill using observed initial conditions is very low, or it may predict
the MJO well but cannot produce MJO statistics in a climate simulation [Klingaman et al., 2015]. It all depends
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on the background state that allows it to produce the MJO. If that background state is close to the observed,
this model may predict the MJO well starting from an observed initiation condition until its background state
drifts away as the lead time increases. But this model may not be able to simulate MJO statistics if the seaso-
nal background state in its climate simulation is very different from the observed most of time. If the back-
ground state conducive to MJO production by a model is very different from observations, this model may
produce MJO statistics in its climate simulation, but it may not predict the MJO well with observed
initial conditions.

Our hypothesis is in line with the previous notion that the background state is a key factor for MJO simula-
tions. But in our hypothesis, a model background state very different from observations would not necessarily
prevent the MJO from being produced by the model. If our hypothesis is correct, it sets a high bar for MJO
simulations, which demands a higher-level scrutiny of models used as tools to understand MJO physics. If
these models cannot produce a background state close to the observed but can produce the MJO to a certain
degree, the MJO physics suggested by their diagnostics may not be reliable. The practice of tuning a model to
gain in MJO simulations at the cost of its background state moving away from observations can only produce
misleading results and should not be encouraged [Kim et al., 2011, 2014]. How close the background state of
a model must be to observations for it to be a reliable tool for the MJO study is a subject for
further investigation.
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